Formal Verification of Secure Programs
in the Presence of Side Effects

Paul E. Black*
National Institute of
Standards and Technology
Gaithersburg, Maryland 20899
paul.black@nist.gov

Phillip J. Windley
Computer Science Department
Brigham Young University
Provo, Utah 84602-6576
windley@cs.byu.edu

Copyright 1998 IEEE. Published in the Proceedings of the Hawai’i International
Conference on Systems Sciences, January 6-9, 1998, Kona, Hawaii.

Abstract

Much software is written in industry stendard pro-
gramming languages, but these languages often have
complez semantics making them hard to formalize.
For ezample, the use of ezpressions with side effects
is common in C programs. We present new inference
rules for conditional (if) statements and looping con-
structs (while) with pre- and postevaluation side ef-
fects in their test expressions. These inference rules
allow us to formally reason about the security proper-
ties of programs.

We maintain that formal verification of secure pro-
grams written in common languages is feasible and can
be worthwhile. To support our claim, we give an ez-
ample of how our verification of a secure web server
uncovered some previously unknown problems.
Automated theorem proving assistents can help deal
with complez inference rules, but many components
must be brought together to make a broadly useful sys-
tem. We propose elements of a formal verification sys-
tem which could be widely useful.

1. Introduction

We have been working on proving security prop-
erties of an http daemon, thttpd, written in C. It is
engineered to provide information to the World Wide
Web and to be free of security flaws, even in the pres-
ence of a few operating system bugs or administrative
errors. The code has a five page informal proof of
correctness, and has been reviewed and critiqued by
dozens of experts. It seems like an ideal candidate for
a formal proof, and a proof would increase confidence
in its security.

A formal verification is a means to investigate the
consistency and completeness of specifications, prop-
erties, models of implementations, and assumptions
[2]. To verify thttpd, we need a specification of the
security properties of interest, a semantics of the lan-
guage and the pertinent parts of the environment in

*This work was sponsored by the National Science Founda-
tion under NSF grant MIP-9412581 while Black was at BYU.

which it runs, and a set of inference rules. In practice
we also need a mechanized theorem proving assistant
to handle details of the proof and to act as “a tireless
mechanical skeptic.” [14, page 53]

We chose Hoare’s axiomatic semantics [12] as a
powerful, but simple-to-understand model. We found
that most work in axiomatic semantics has been on
relatively simple languages in order to focus on par-
ticular concepts, such as distributed system [11] or a
fully verified tool set [13]. Production languages, such
as C or COBOL, are generally very rich with many
overlapping features, instead of a minimal set, to ex-
press different kinds of algorithms and data structures
succinctly. To verify thttpd we developed new infer-
ence rules which handle pre- and postevaluation side
effects in simple assignment statements, conditional
statements, function calls, and looping constructs.

We implemented these inference rules in HOL [8]
beginning with code from Harrison [11]. We extended
it with rules documented in Gordon [7] and Home-
ier’s rules [13]. We then wrote goal-directed tactics to
automate the proof. An ad-hoc parser adapted from
Paulson [18, chapter 9] converts C code into equivalent
abstract syntax trees.

Why verify programs written in C? Much soft-
ware is written in industry standard programming lan-
guages because people are trained in its use, compilers
and libraries are widely available and experience has
shown them to be reliable, many tools exist to work
with and analyze programs written in them, etc.

Sect. 2. presents inference rules for basic state-
ments with preevaluation and postevaluation side ef-
fects. Sect. 3. shows rules which allow pre- and poste-
valuation side effects in the test expressions of con-
ditionals and while loops. This section also explains
how to create similar rules for other looping constructs
and suggests how diversions in the control flow might
be handled. We include an example from thttpd in
Sect. 4.2 to demonstrate how formal verification can
uncover faults. Finally Sect. 5. lists future work, in-
cluding a proposal for the components of formal soft-
ware verification system which could be widely used,
and Sect. 6. has our conclusions.

Since we use notations and concepts which are
quite familiar to some people, but new to others, we
explain some syntax and meaning of axiomatic seman-
tics in Appendix A. Appendix B explains some rele-
vant nuances of Unix permissions.

2. General Inference Rules for Side Ef-

fects
We use Hoare axiomatic semantics to express the
correctness of program statements. The representa-
tion for partial correctness is

F {P} code {Q}

This means if predicate P is true of the current state,

then when code finishes, the result is a state in which

predicate Q is true. See Appendix A for more details.
An inference rule has the form

H,
H,
C

The meaning is if all of the hypotheses Hy, ..., H, are
true, one can conclude C. Any number of hypotheses
may qualify one conclusion.

Much of this section is taken from [3], but the
rules presented here are more general.

The basic axiom for an assignment statement v =
expr; is

F {ngpr} v = expr; {Q}

as long as expr doesn’t have any side effects [7, pp.
15-17]. That is if ngpr is true and the assignment
finishes, Q will be true. The notation ngpr denotes
Q with all free occurrences of v replaced by expr. For
instance, (g (b + 1))(gi_1) is ((i-1)*(h+1)).

Since expressions in the C language may have
side effects, this rule does not always apply. As
a simple example, the semantics of a = 2 * ++b;
is well defined [10]: it is equivalent to ++b; a = 2
* b;. Applying the above rule we could conclude
{b=2}a=2%*++b; {b =2} which is wrong.

To reason about statements with side effects, we
introduce a general inference rule which derives the
correctness of one statement from the correctness of a
semantically equivalent statement.

SEM_EQ stml stm2
F {pre} stm1 {post}
F {pre} stm2 {post}
The predicate SEM_EQ is true if its two statement argu-

ments are semantically equivalent. The inference rule
means if

(1)

e two statements are semantically equivalent, and

e there is a partial correctness theorem for precon-
dition, statement stmi, and postcondition

we can conclude an analogous partial correctness the-
orem for statement stm2.

Preevaluation side effects may be separated from
statements with the following rule.

PreEval expr stml stm2
SEM_EQ (Seq (Simp expr) stml) stm2

(2)

Seq is the abstract syntax constructor which creates
a statement from a sequence of two statements. Simp
converts an expression into a simple statement, which
is allowed in C. The PreEval is a predicate which is
true if extracting the preevaluation side effects expres-
sion expr from statement stm2 yields stmi.

Informally the rule means that if stm2 can be sep-
arated into expr (which has all preevaluation side ef-
fects) and stmi, then expr (in a statement) followed
by stmi is semantically equivalent to stm2.

For example, we can derive the correctness of
a = 2 * ++b; from the correctness of the sequence
of simpler statements ++b; a = 2 * b; with

SEM.EQ (++b; a=2%b;) a = 2% ++ b;
F{P} ++1b; a=2xD; {qQ}
F{P}a=2x*++1;{qQ}

and

PreEval +44b a=2+b; a=2%*-4+4Db;
SEM_EQ (Seq(Simp ++b)a=2xb;) a =2%++b;

C allows postevaluation side effects in expressions
in addition to preevaluation side effects. The state-
ment 4 = 2 * f++; is well defined, as is equivalent
tod = 2 * f; f++;. Postevaluation side effects may
be separated with the following rule.

PostEval stml expr stm2
SEM_EQ (Seq stml (Simp expr)) stm2

Informally if extracting the postevaluation side effects
expression expr from statement stm2 yields stmi,
then stm1 followed by expr is semantically equivalent
to stm2.

Why add semantic equivalence and more inference
rules in order to handle side effects? Homeier’s lan-
guage, Sunrise [13], has an operator with a side effect,
increment, which can occur in test expressions. He
handles this by embedding the semantics of the op-
erator in the inference rules. However user-written
functions, which may have arbitrary side effects, can
occur in loop and conditional test expressions in C.
Even statements without function calls can have mul-
tiple side effects using, say, increment and assignment
operators. We take this more general approach to be
able to separate a side effect from the expression in
which it occurs.

Having a semantic equivalence rule (1) also al-
lows us to more uniformly express other semantically
complexities. We can use semantic equivalence to
clearly express the associativity and composition of se-
quences of statements, the relation between one-armed

(if...then) and two-armed (if...then...else)
conditionals, the semantics of the empty statement,
etc., in addition to pre- and postevaluation side ef-
fects. Although this rule “factoring” would greatly
complicate a manual proof, but we have written proof
subroutines, called “tactics” in HOL, invoke and prove
instances of the rules automatically.

3. Side Effects in Control Structures

The rules presented above are inadequate for con-
trol statements. For instance, suppose we were allowed
to apply the postevaluation rules to the following code.

if (b++ > 0) {

t = Db;
} else {
e = b;

}

It would be transformed into this (note the postincre-
ment afterward) which is not the same. The incre-
ment would be delayed until after the entire condi-
tional statement.

if (b > 0)
t = Db;
} else {
e = b;
}
b++;

In this section we present inference rules for some
control structures and indicate how the general ap-
proach could cover many other structures.

3.1 Side Effects in Conditionals

Conditionals are the simplest form of control
statements for our purposes. Without side effects the
inference rule is straight forward:

IS_VALUE expr test
F {pre A test} thenCode {post}
F {pre A ~test} elseCode {post}

F {pre} If (expr) thenCode elseCode {post}

IS_VALUE means that test is the assertion language
equivalent of expr.

Any preevaluation side effects can be separated
and handled with the semantic equivalence (1) and
preevaluation (2) rules.

Figure 1 shows the flow in a conditional statement
with side effects in the test expression. In summary
the sequence of events is

1. Determine the test condition in the initial state
(when the precondition is true),

2. Evaluate the postevaluation side effects, yielding
new conditions, then

3. Evaluate the code in the body, yielding a post-
condition.

precondition

‘precondition A test ‘ ‘precondition A ~test ‘
]]
postStm postStm

“then” code

falseCond

“else” code

postcondition

Figure 1: Control Flow in a Conditional

This is the corresponding inference rule.

SEM_EQ (Seq (Simp expr) postStm)) (Simp ex)
(postStm = EmptyStmt) V

(postStm = (Simp postSeEx)

A NoPreSE postSeEx)

IS_VALUE expr test
F {pre A test} postStm {trueCond}

F {pre A ~test} postStm {falseCond}
F {trueCond} thenCode {post}
F {falseCond} elseCode {post}

F {pre} IfElse (ex) thenCode elseCode {post}

Informally the above means that if the following
conditions are met, we can conclude the partial cor-
rectness of the conditional statement.

e The original test expression code ex is split into
a side effect free test expression expr followed
by a statement for any postevaluation side effects
postStm. (Any preevaluation side effects can be
removed by Rule 2.)

e Either the postevaluation side effect statement
postStm is the empty statement (if there are no
side effects), or it is a simple statement of an
expression postSeEx having the postevaluation
side effect conditions, but no preevaluation side
effects.

e expr in the programming language corresponds
to test in the assertion language.

e Executing postStm with test true or false es-
tablishes the “true” or “false” conditions respec-
tively.

e Executing the “then” and the “else” code estab-
lishes the post condition.

Typically most of these theorems are proven automat-
ically, thus minimizing the user’s work.

An inference rule for one-armed conditionals can
be derived from the above rule and the following rule.
It states the semantic equivalence of one-armed con-
ditionals and two-armed conditionals with an empty
“else” case.

SEM_EQ (IfElse t s EmptyStmt) (If t s)

3.2 Side Effects in Loop Statements

In simple languages the inference rule for a while
loop, or backward jump, is straight forward:

IS_VALUE expr test
F {invariant A test} body {invariant}

(3)

F {invariant} while expr body
{invariant A “test}

When test expressions can have side effects, the
rule is more complex. We cannot use the preevaluation
rule as we could with conditionals. If we could use the
preevaluation rule, we could prove

while (preeval side-effects in expr)
body

by proving

preeval side-effects;
while (expr)
body

But in the second form, the side effect is not executed
every loop! The flow of control in a while loop with
pre- and postevaluation side effects is as follows.

invariant

preStm
}

|testState A test | |testState A ~test |

!

postStm

postStm

'
body

v

Figure 2: Control Flow in a While Loop

The corresponding inference rule for while state-
ments is then

(preStm = EmptyStmt) V
(preStm = (Simp preSeEx)
A NoPostSE preSeEx)
(postStm = EmptyStmt) V
(postStm = (Simp postSeEx)
A NoPreSE postSeEx)
SEM_EQ (Seq preStm(Seq(Simp testEx)postStm))
(Simp ex)
IS VALUE testEx test
F {invariant} preStm {testState}
F {testState A test} postStm {bodyCond}
F {testState A ~test} postStm{post}
F {bodyCond} body {invariant}

F {invariant} (while ex body) {post}

In other words if

e The preevaluation (preStm) and postevaluation
(postStm) side effects statements are either
empty statements or are expressions with just
pre- or postevaluation the side effects respectively.

e Executing preStm, then the remaining test ex-
pression (testEx), then postStm is equivalent to
the original test expression.

e testExin the programminglanguage corresponds
to test in the assertion language.

e Executing preStm in the invariant condition es-
tablishes a test condition.

e Executing postStm with test true or false es-
tablishes the “body” or “post” conditions respec-
tively.

e Executing the body code in the body condition
reestablishes the loop invariant.

then {invariant} (while ex body) {post} is true.

We allow preStm and postStm to be the empty
statement in case the original test expression has no
side effects. To support our confidence in the rule, we
note that when expr has no side effects, preStm and
postStm are the empty statement. Therefore the test
condition is the same as the invariant, the body con-
dition is invariant A test, and the post condition is
invariant A ~test. This reduces to the basic while
loop rule (3).

The HOL tactic to reduce a while loop optionally
takes a test condition and a body condition. The user
can skip either or both if there are no side effects. The
tactic also proves most conditions automatically. Thus
the complexity of the rules are only exposed when nec-
essary, and the user’s work is minimized.

3.3 Other Looping Constructs

Other looping constructs can be handled similarly.
The for and do...while loops in C, do...until in
Pascal, and loop...begin...again in Forth can be

broken apart into side conditions and correctness con-
ditions over pieces of code. Built-in tactics can keep
track of where correctness conditions are needed and
with regard to which expressions or pieces of code.

Directives which change the flow of control within
loops, such as break and continue in C, can be han-
dled with multiple post conditions as originally set
forth in [1]. For example, a break statement would
have a formalization something like this.

F {pre} break; {[next : false,break: pre|}

In other words, the next sequential condition is “false”
(control never arrives at the next statement), and the
precondition of the break is the condition where the
break control flow arrives.

4. Example from Verifying a Secure
Web Server

In June 1995, Management Analytics wrote a se-
cure World Wide Web server called thttpd. The code
consists of about 100 lines of C. They point out [5]
that

The main risk to providers of [web] services
is that someone might be able to fool their
server software into doing something it is not
supposed to do, thus allowing an attacker to
break into their server and do some harm.

Thus they wrote a small server with intentionally
redundant security features. They listed the security
properties as information integrity (no information on
the server can be corrupted by outside users), avail-
ability of service (outside users cannot deny services
to other users), and confidentiality (the server only
provides information which is explicitly authorized for
outside access). A five page detailed, but informal,
review argues that the code has these properties. Ad-
ditionally it has been tested for typical programming
errors, and it ran over a year without a single known
security breach.

4.1 Definition of Confidentiality

In this section we discuss the definition of confi-
dentiality we use. Our formal definition involves many
details not relevant to verification in the presence of
side effects.

Above we define confidentiality as a property of
the information which may flow to a remote user.
We assume that the only channel to a remote user is
through standard out. (When invoked for the web,
standard out is directed back to the remote user.)
Since contents of files are the primary objects of in-
terest, we model the server simply as a set of files,
i.e., the file system. We follow the Unix convention in
treating standard out as one of the files.

With this model, we say the code has confiden-
tiality if each file has confidentiality after the code
executes. Each file has confidentiality if the file is not
standard out (assuming remote users cannot access
local files) or all information in the file is nonconfiden-
tial. Information is nonconfidential if it is defined as
such (e.g., fixed strings in the program) or if it is read
from a file authorized for outside access.

4.2 Confidentiality of the Function, cat

To illustrate reasoning about expressions with side
effects, we discuss the proof of confidentiality of one
function in thttpd. Other properties can be proven
separately [4]. This function, cat, returns the contents
of the requested file to the user. Here is the code with
applicable global declarations.

#define BUFSIZE 4096
#define MAXSIZE 2048
char bs2[BUFSIZE];

void cat(s)
char s[];
{int i,n;FILE *F;
i=open(s,0);
while ((n=read(i,bs2,MAXSIZE)) > 0)
write(1,bs2,n);
close(i);}

In more detail, cat is passed the pathname, s, for a
file. The code opens the file for reading, copies its con-
tents to standard out, then closes the file. In thttpd
code preceding the call to cat checks that the file is au-
thorized for outside access, in particular, it is “other”
readable. See Appendix B for more detail on Unix
permissions.

First we prove nonConfFD i after opening a file
authorized for outside access, where nonConfFD is true
if its argument refers to a nonconfidential file and 1 is
the file descriptor. If open succeeds, this is indeed
the case. However, if the file is not user-readable and
the process and file user are the same, open fails and
returns -1. Thus we can only prove the weaker post-
condition i # —1 = nonConfFD i. The code was in-
tended to have the stronger postcondition, so it does
not perform as desired. However it does not cause a
security breach.

The test in the loop has preevaluation side effects,
so we use Rule 3.2. Referring to Figure 2, the test state
satisfies the condition (i # —1 = nonConfFD i) A
(n > 0 = nonConfS bs2), where nonConfS means its
argument is a nonconfidential string. The test isn > 0.
Since there are no postevaluation side effects, the body
condition is the test condition “and” n > 0, and the
postcondition must be implied by the test condition
“and” ~(n > 0).

We use the preevaluation rule (2) to separate
the read call from the assignment. Then we use
the axiom of calls to read to prove that executing
n=read(i,bs2,MAXSIZE) establishes the test condi-
tion. From the test condition and the test, we can
conclude nonConfS bs2, that is, the information in
the buffer is not confidential. (If the open failed, the
documentation and some experiments suggest that the
read will fail.) We use the nonconfidentiality of the
buffer and the axiom of calls to write to prove that
the invariant is reestablished: the file system (still)
has confidentiality.

While writing and using the write axiom, we
found another problem. Since write might not write
all (or any!) of the characters passed, thttpd might not
return the complete contents of a file. This does not

cause a security breach, but a more thorough imple-
mentation could retry write until all characters were
written or some permanent failure occurred.

As a side note, the code which calls cat assumes
cat succeeds (having checked “everything” before call-
ing it) and unconditionally logs a “cat filename” mes-
sage. However the open or write calls may fail. Al-
though this is not a security breach, the log file may
be misleading.

Proving that the close maintains confidentiality
takes a single line. We give the HOL tactic here to
give a idea of the proof although it is unclear without
additional documentation.

e (CALL_TAC SYS_close THEN
STRIP_THEN_REWRITE_TAC);

This invokes the function call tactic with the axiom of
calls to the system function close, then strips quan-
tifiers and implications the rewrites the foal with as-
sumptions. The proof of confidentiality of cat is about
two pages of similar tactics.

The verification of thttpd security was finished in
July 1997. The proof is about 2,500 lines of definitions
and tactics. The description of the Unix environment
and system calls is about 1,000 lines.

5. Future Work

This section describes possible future improve-
ments and outlines the components required for a com-
plete, broadly usable software verification system.

5.1 Sequence Points

The inference rules given in Sect. 3. handle pre-
and postevaluation side effects. However, they are not
valid in the presence of sequence points with side ef-
fects. Sequence points arise in C from logical OR’s
(11), logical AND’s (&&), and the comma operator (,),
among others. Consider the semantics complexity of
the following code fragment. The variable ¢ may or
may not be incremented and three more intermediate
states arise compared with Figure 1.

if (b++ || c++ > b)

Arbitrarily many sequence points may occur in an ex-
pression leading to arbitrarily branching control flows.
Future work should find a more general scheme of
inference rules which addresses side effects with se-
quence points.

5.2 More Formalization

Much of the current logic is shallowly embedded.
For instance, the inference rules are embedded as ax-
ioms with only informal arguments of correctness, and
the predicates PreEval and PostEval are only par-
tially formalized. There are surely errors or unneces-
sary restrictions given how complex the semantics of C
are. Since one of the values of post-hoc verification of
source code is examining extreme cases, the language
model must be highly reliable.

This reliability can come from proving the cor-
rectness of the logic from a lower level, definitional
description such as operational semantics [13, 16] or
abstract state machines [9]. Definitional descriptions
are much easily to get correct, but may be harder to
reason with.

5.3 A Complete Verification System

This paper concentrates on one aspect of prac-
tical formal verification: inference rules for complex
semantics. But merely having a formal model of the
language does not constitute a broadly useful software
verification system. We believe the following elements
would be necessary and sufficient.

1. A library of examples of design formalizations and
examples of how to formalize common program-
ming patterns. A formal specification is the first
step in verification [2] and can, in itself, be of
great benefit [6]. But finding a formalization and
avoiding lapses can be hard. The specification of
sorting in an early version of [7] could have been
trivially satisfied by setting all the values to zero:
it didn’t specify that values at the end are a per-
mutation of beginning values.

2. A high level model of the language along with
rules of inference, such as axiomatic semantics.
As explained above (5.2) the logic must be proven
correct from a low level, definitional semantics.

3. Formal models of the environment. This begins,
of course, with the programming language, but
includes standard libraries, operating system rou-
tines, network services, etc. Larger programs of-
ten use other services rather than being stand-
alone entities.

4. A powerful, highly automated theorem proving
environment. This corresponds to PVS [17],
very powerful tactics in HOL, verification con-
dition generators [13, 15|, etc. An environment
which finds loop invariants and proves most lower
level theorems automatically allows a lower entry
training cost and less user time.

A system like this could be as widely used as compilers
or project management tools are today.

6. Conclusions

Semantic complexity of a language need not pre-
vent formal verification of programs written in that
language. We presented new inference rules for if
and while statements in C which may be used when
test expressions have some types of side effects. The
same general scheme can be applied to develop infer-
ence rules for control constructs in other languages.
With these new rules, we can use axiomatic semantics
to formally reason about a broader class of statements.

A widely-used formal verification system is prac-
tical. We outlined the components needed for a com-
plete software verification system, and believe that
such a system could be as widely accepted as com-
pilers and configuration management tools are now.

Formal verification can be beneficial, even for well
engineered and tested programs. We give an example
of how formal verification uncovered hitherto unknown
(or undocumented) errors. The discipline of formal
verification forces us to think more clearly about our
specification and goals.

Although we presented these ideas in the context
of post-hoc verification of source code, they also apply
to complementary quality control approaches such as
validation and testing. For example, formal semantics
of a programming languages and formal specifications
can drive automatic generation of test cases.

Acknowledgments

We are grateful to Frederick B. Cohen for letting
us use thttpd as a test case for verification. We thank
for referees for their critiques and suggestions, espe-
cially the clearer formulation of inference rules for if
and while statements.

References
[1] Michael A. Arbib and Suad Alagié. Proof rules
for gotos. Acta Informatica, 11(2):139-148, 1979.

[2] Paul E. Black, Kelly M. Hall, Michael D. Jones,
Trent N. Larson, and Phillip J. Windley. A brief
introduction to formal methods. In Proceedings of
the IEEE 1996 Custom Integrated Circuits Con-
ference (CICC ’96), pages 377-380. IEEE, 1996.

[3] Paul E. Black and Phillip J. Windley. Infer-
ence rules for programming languages with side
effects in expressions. In Joakim von Wright,
Jim Grundy, and John Harrison, editors, Theo-
rem Proving in Higher Order Logics (TPHOLs
’96), volume 1125 of Lecture Notes in Computer
Science, pages 51-60. Springer-Verlag, 1996.

[4] Paul E. Black and Phillip J. Windley. Verify-
ing resilient software. In Ralph H. Sprague, Jr.,
editor, Proceedings of the Thirtieth Hawait In-
ternational Conference on on System Sciences
(HICSS-30), volume V, pages 262-266. IEEE

Computer Science Press, January 1997.

[5] Frederick B. Cohen. A secure world-wide-web
daemon. Computers & Security, 15(8):707-724,
1996.

[6] Ben L. Di Vito and Larry W. Roberts. Using for-
mal methods to assist in the requirements analy-
sis of the space shuttle gps change report. Con-
tractor Report 4752, NASA Langley Research
Center, August 1996.

[7] Michael J. C. Gordon. Programming Language
Theory and its Implementation. Prentice-Hall,
Inc., 1988.

[8] Michael J. C. Gordon and Tom F. Melham, ed-
itors. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge
University Press, 1993.

[9] Yuri Gurevich. Evolving algebras: An attempt to
discover semantics. In G. Rozenberg and A. Salo-
maa, editors, Current Trends in Theoretical Com-
puter Science, pages 266-292. World Scientific,
1993.

[10] Samuel P. Harbison and Guy L. Steele, Jr. C, 4
Reference Manual. Prentice-Hall, Inc., 1991.

[11] William L. Harrison. Mechanizing the axiomatic
semantics for a programming language with asyn-
chronous send and receive in HOL. Master’s the-
sis, Dept. of Computer Science, University of Cal-
ifornia, Davis, September 1992.

[12] C. A. R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM,
12(10):576-583, October 1969.

[13] Peter Vincent Homeier. Trustworthy Tools for
Trustworthy Programs: A Mechanically Verified
Verification Condition Generator for the Total
Correctness of Procedures. PhD thesis, Univer-
sity of California, Los Angeles, 1995.

[14] Patrick Lincoln and John Rushby. A formally ver-
ified algorithm for interactive consistency under
a hybrid fault model. Contractor Report 4527,
NASA Langley Research Center, July 1993.

[15] W. Douglas Maurer. A minimization theorem for
verification conditions. In Proc. 8th International
Conference on Computing end Automation (ICCI
’96), 1996.

[16] Michael Norrish. An abstract dynamic semantics
for C. Technical Report 421, Computer Labora-
tory, University of Cambridge, May 1997.

[17] Sam Owre, John M. Rushby, and Natarajan
Shankar. PVS: a prototype verification system. In
Deepkar Kapur, editor, 11th Conference on Au-
tomated Deduction (CADE), volume 607 of Lec-
ture Notes in Artifical Intelligence, pages 748-
752. Springer Verlag, June 1992.

[18] Lawrence C. Paulson. ML for the Working Pro-
grammer. Cambridge University Press, 1993.

A Axiomatic Semantics

Our verification work is done in the HOL theorem
prover [8]. This appendix briefly explains some HOL
conventions and some notations we use in the paper.
In HOL, all free variables are assumed to be univer-
sally quantified. Variables may range over functions
as well as simple types. Function application is im-
plicit. Thus the theorem Pz means “for all P and z,
P(z) is true.”

Our notation is based on axiomatic semantics [12].
There are two main types of statements: partial cor-
rectness and total correctness. An axiomatic state-
ment of partial correctness is

F {Precondition} Code {Postcondition}

where Precondition and Postcondition are predi-
cates on the state of the computation and Code is a
fragment of code. The above means if Code is ex-
ecuted in a state which satisfies Precondition and
it terminates, Postcondition will be true of the re-
sulting state. In this case, “terminates” means that
the code doesn’t loop indefinitely or abort abnormally.
For example,

Fly=3}tx=y;{z =3}

Although not used in this paper, a statement of total
correctness is similar, but asserts that the computa-
tion always terminates.

B Unix Permissions

Typically in Unix systems, processes have two
identification numbers pertinent to our paper: user
ID (UID), representing the person running the pro-
gram, and group ID (GID), representing the person’s
group affiliation. Files also have a UID and a GID,
and have three sets of permissions:

e those for the file owner (“user”),

e those for people in the same group as the file
(“group”), and

e those for any other person in the world (“other”).

If the process’ UID matches the file UID, user per-
missions are checked to authorize the operation. If
the UID’s don’t match, but the GID’s match, group
permissions are checked. If neither UID’s nor GID’s
match, the “other” or world permissions are checked.

Although permissions are typically used hierarchi-
cally, it need not be so. Thus a file may be readable
by everyone on the system except the owner, if it has
read permission for others but no read permission for
the owner.

